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Abstract—Elliptic codes is an important class of algebraic-
geometric (AG) codes due to their least genus penalty. Their
codeword length can exceed that of Reed-Solomon (RS) codes
defined over the same finite field, resulting in a greater error-
correction capability. This paper proposes the module basis
reduction (BR) technique for solving the interpolation problem in
algebraic list decoding (ALD) of one-point elliptic codes. A basis
of the module that satisfies all interpolation constrains can be
constructed by defining the explicit Lagrange interpolation func-
tion over the elliptic function field. They lead to the generators for
the module basis. The basis can be further reduced to the desired
Gröbner basis which contains the minimum interpolation poly-
nomial Q(x, y, z). Compared with Koetter’s interpolation, the
BR interpolation technique significantly reduces the complexity
in finding Q(x, y, z). Our analysis shows the BR interpolation
complexity will reduce as the code rate increases.

I. INTRODUCTION

Algebraic-geometric (AG) codes were introduced by Goppa
[1] based on algebraic curves over finite fields. Reed-Solomon
(RS) codes can be regarded as a special class of AG codes
that are constructed from an affine straight line. They have
been widely employed in communication and storage systems.
However, its length cannot exceed the size of finite field, which
limits their error-correction capability. General AG codes have
a codeword length greater than the size of finite field, and its
minimum Hamming distance is lower bounded by its designed
distance that is defined as d∗ = n − k − g + 1, where n, k
and g are the length of the code, the dimension of the code
and the genus of the curve, respectively. However, an AG code
that enjoys a large codeword length also suffers from a large
genus penalty. Elliptic curves have g = 1, resulting in elliptic
codes maintain a good tradeoff between its codeword length
and genus penalty.

The early decoding algorithms for AG codes were the
syndrome based decoding, with an error-correction capability
bounded by ⌊d∗−1

2 ⌋.The Berlekamp-Massey (BM) algorithm
on univariate linear recursive relation was generalized by
Sakata [2] to multivariate domain, which is called the BMS
algorithm. Assisted by Feng and Rao’s the majority vot-
ing [3] for determining the unknown syndromes, Sakata et
al. [4] presented a fast decoding algorithm for AG codes.
The interpolation based algebraic list decoding (ALD) was
first proposed to decode low rate RS codes by Sudan [5],
which has an error-correction capability beyond ⌊d∗−1

2 ⌋. By
constructing a curve that passes through all interpolation

points with a multiplicity, Guruswami and Sudan [6] later
improved it to decode all rate RS and AG codes, namely
the Guruswami-Sudan (GS) algorithm. It can correct up to
n − ⌊

√
n(n− d∗)⌋ − 1 errors. The ALD algorithm consists

of interpolation and root-finding. The interpolation is often
realized by Koetter’s iterative polynomial construction [7]
which dominates the decoding complexity. By defining zero
basis of each affine point, Høholdt and Nielsen [8] presented a
mathematical framework for GS decoding of Hermitian codes.
Using Koetter’s interpolation, soft-decision ALD of Hermitian
codes was later proposed by Chen et al. [9]. Recently, the
authors have presented GS decoding of elliptic codes using
Koetter’s interpolation [10]. The other interpolation technique
is based on the Gröbner basis of modules [11]. It not only
has a lower complexity than Koetter’s interpolation, but also
eliminates the need of pre-computing the zero basis of each
affine point and the corresponding coefficients [12]. Lee and
O’Sullivan proposed GS decoding of Hermitian codes using
the module basis reduction (BR) interpolation technique [13].
By applying the Alekhnovich basis reduction algorithm [14],
Beelen and Brander further reduced the complexity in finding
the interpolation polynomial for a class of AG codes [15]. In
[16], Nielsen and Beelen presented the power decoding and GS
decoding algorithms for Hermitian codes, both of which apply
the BR technique realized by the fast approach of [17]. Lax
defined a generic interpolation polynomial by considering the
components of a received word as variables [18], and further
generalized the list decoding algorithm for Hermitian codes
[13] to decode AG codes.

This paper introduces ALD for one-point elliptic codes
using the BR interpolation technique. Based on the theory of
Gröbner basis of modules, the interpolation problem is trans-
formed into finding the minimal polynomial in the reduced
module basis. In order to construct the basis of a module that
satisfies all interpolation constrains, the Lagrange interpolation
functions over the elliptic function field are defined. They lead
to the definition of module generators, constituting the module
basis. Together with the basis reduction, they formulate the
module based ALD algorithm for elliptic codes. Complexity of
the BR interpolation for ALD of elliptic codes will be charac-
terized. Our analysis will show that the BR interpolation have
lower complexity in comparison with Koetter’s interpolation
[10]. The BR interpolation complexity would also be lower
for a higher rate code.
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II. ELLIPTIC CURVES AND ELLIPTIC CODES

Let Fq denote a finite field of size q. The elliptic curve χ in
homogeneous coordinates over Fq is defined by a nonsingular
Weierstrass equation

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,
(1)

where curve coefficients a1, a2, a3, a4, a6 ∈ Fq . The curve has
a genus of g = 1. Over χ, there exists a point of infinity, i.e.,
P∞ = (0, 1, 0). With Z = 1, an affine component of χ can
be obtained as

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6. (2)

Points on the above affine curve are called affine points. For
simplicity, they are denoted as Pi = (xi, yi). Let χ(Fq) denote
the set of Fq-rational points of χ, i.e., χ(Fq) = {Pi}

∪
{P∞}.

Fq-Rational points form an additive Abelian group based on
the “chord-and-tangent” rule with P∞ as the identity element
[19]. For any affine point Pi of χ, there exists a smallest
positive integer δ such that δPi = P∞, where δ is the order
of Pi. Coordinate ring of χ is the integral domain

R = Fq[X,Y ]/ < Y 2+a1XY+a3Y−X3−a2X
2−a4X−a6 > .

(3)
The elliptic function field Fq(χ) of χ is the quotient field of
R. Let x and y denote the residue classes of X and Y in R,
respectively. Since y2 = −a1xy−a3y+x3+a2x

2+a4x+a6,
R = Fq[x, y] and any element of R can be denoted as a
bivariate polynomial (in x and y) with y-degree less than 2.

Given h ∈ Fq(χ), its order at a rational point P is vP (h).
There exists a function Λ, which is called a local parameter at
P such that vP (Λ) = 1 and h = ΛvP (h)h′, where vP (h

′) = 0.
h has a zero of order vP (h) at P if vP (h) > 0. It has a
pole of order −vP (h) at P if vP (h) < 0. For elliptic curves,
−vP∞(x) = 2, −vP∞(y) = 3 and −vP∞(xλyγ) = 2λ + 3γ.
Let ϕa(a ∈ N) denote a monomial of R, where N denote
nonnegative integer. In general, ϕa = xλyγ , where λ ∈ N and
γ ∈ {0, 1}. Consequently, monomials

1, x, y, x2, xy, x3, x2y, x4, x3y, . . . (4)

form a basis of R, which is called the pole basis. Therefore,
h ∈ R can be written as h =

∑
haϕa, where ha ∈ Fq and

−vP∞(h) = max{−vP∞(ϕa) | ha ̸= 0}.
Definition 1: For each point P , define a formal symbol

[P ]. Let nP denote an integer that corresponds to P , D =∑
P∈χ(Fq)

nP [P ] is a divisor of χ. It has a degree of deg(D) =∑
P∈χ(Fq)

nP and a sum of sum(D) =
∑

P∈χ(Fq)
nPP .

Definition 2: [19] Let h ∈ Fq(χ) and h ̸= 0, the divisor of
h is defined as div(h) =

∑
P∈χ(Fq)

vP (h)[P ]. div(h) is also
called the principle divisor of χ.

For any divisor D, let L(D) denote the Riemann-Roch space
defined by D.

Suppose {P0, P1, . . . , Pn−1} is a set of n distinct affine
points on χ. Let G =

∑n−1
i=0 [Pi] and D = k[P∞] denote

divisors of χ, where k < n . Let f ∈ L(D) denote the message

polynomial which can be written as

f(x, y) = f0ϕ0 + f1ϕ1 + · · ·+ fk−1ϕk−1, (5)

where f0, f1, . . . , fk−1 ∈ Fq denote the message symbols.
Based on χ, an one-point elliptic code is defined as

Cχ(G,D) = {(f(P0), f(P1), . . . , f(Pn−1)) , ∀f ∈ L(D)},
(6)

where codeword c = (c0, c1, . . . , cn−1) = (f(P0), f(P1), . . . ,
f(Pn−1)) ∈ Fn

q . It has length n and dimension k. Designed
distance of the code is d∗ = n − k. Note that an (n, k)
elliptic code will be an MDS code if and only if for any
{Pi1 , Pi2 , . . . , Pik} ⊆ supp(G), [Pi1 ] + [Pi2 ] + · · · + [Pik ] −
k[P∞] is not a principal divisor.

The above description shows that the number of affine
points on curve χ determines the length of the elliptic code.
Based on the Hasse-Weil bound [19], the maximum number
of affine points on an elliptic curve is q+⌊2√q⌋. This number
can be reached by choosing the curve coefficients a1, a2, a3, a4
and a6, appropriately.

Let A = {α0, α1, . . .} denote the set of x-coordinate of
all affine points on χ and Bi = {β(j)

i } denote the set of Fq

elements that satisfy β
(j)
i

2
+a1xiβ

(j)
i +a3β

(j)
i = x3

i +a2x
2
i +

a4xi + a6. In general, |Bi| = 2. However, if 2Pi = P∞, i.e.,
−Pi = Pi, |Bi| = 1. If Fq has a characteristic of 2, there exists
at most one affine point of order 2. Otherwise, there exists
at most 3 such affine points. In this paper, the affine points
of order 2 are not used to generate the codeword symbols.
Therefore, |A| = n/2 and |Bi| = 2.

The following Lagrange interpolation function over the
elliptic function field is introduced.

Theorem 1: Let

Li(x, y) =
∏

α∈A\{xi}

x− α

xi − α

∏
β∈Bi\{yi}

y − β

yi − β
, (7)

then Li(x, y) ∈ R, and it satisfies Li(Pi) = 1, ∀i and
Li(Pi′) = 0, ∀i′ ̸= i.

Proof: Since |Bi| = 2, then Li(x, y) is a bivariate polyno-
mial in x and y with y-degree less than 2, i.e., Li(x, y) ∈ R.
Substituting Pi into Li(x, y) yields Li(Pi) = 1. For i′ ̸= i,
there exists xi′ ∈ A\{xi} or yi′ ∈ Bi \{yi} and Li(Pi′) = 0.

III. ALGEBRAIC LIST DECODING

Let R =
∞∪
u=0

L(u[P∞]) ⊂ Fq(χ) and R[z] denote the poly-

nomial ring defined over R. Given r = (r0, r1, . . . , rn−1) ∈
Fn
q as a received word. The following set of n interpolation

points can be formed

P = {(P0, r0), (P1, r1), . . . , (Pn−1, rn−1)}. (8)

Interpolation constructs a minimum polynomial Q(x, y, z)
∈ R[z], which interpolates the n points with a multiplicity of
m. If Q(Pi, ri) = 0, Q interpolates (Pi, ri). Let R[z]lm =
{Q ∈ R[z] | degzQ ≤ lm}, if an interpolation polynomial
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Q ∈ R[z]lm can be written as

Q =
∑

µ+ν≥m

QµνΛ
µ
i (z − ri)

ν , (9)

and Qµν = 0 for µ+ν < m, Q has a zero of multiplicity m at
(Pi, ri). Root-finding further decodes the message polynomial
f through finding its z-roots, i.e., Q(x, y, f) = 0.

The (1, k)-weighted degree of monomial ϕaz
b is defined

as deg1,kϕaz
b = −vP∞(ϕa) + kb, where the weight of

z is −vP∞(ϕk−1) = k. Given two distinct monomials
ϕa1z

b1 and ϕa2z
b2 , we have ord(ϕa1z

b1) < ord(ϕa2z
b2),

if deg1,kϕa1z
b1 < deg1,kϕa2z

b2 , or deg1,kϕa1z
b1 =

deg1,kϕa2z
b2 and b1 < b2. Hence, given a polynomi-

al Q =
∑

a,b Qabϕaz
b ∈ R[z], where Qab ̸= 0, its

(1, k)-weighted degree and leading order can be defined as
deg1,kQ = max{deg1,kϕaz

b} and lod(Q) = max{ord(ϕaz
b)}.

Furthermore, given two distinct polynomials Q1, Q2 ∈ R[z],
Q1 < Q2, if lod(Q1) < lod(Q2).

Theorem 2: [6] Given a polynomial Q ∈ R[z] that inter-
polates the n points of (8) with a multiplicity of m, and a
polynomial h in the form of (5), if

m(n− |{i | h(Pi) ̸= ri, ∀i}|) > deg1,kQ, (10)

(z − h) | Q or Q(x, y, h) = 0.
Therefore, the message can be decoded by finding z-roots

of Q. If message f can be decoded, i.e., f(Pi) = ci, the ALD
corrects |{i | f(Pi) ̸= ri, ∀i}| errors and this error-correction
capability can be improved by increasing m. Given an (n, k)
elliptic code, the ALD algorithm’s error-correction capability
is upper bounded by [6]

τALD = n−
⌊√

nk
⌋
− 1. (11)

Furthermore, let lm and τm denote the maximum number of
decoded candidates and the error-correction capability with an
interpolation multiplicity of m, respectively. Since the decoded
candidates are z-roots of Q, lm = degzQ. lm ≥ m holds. For
an (n, k) elliptic code, they can be characterized as [10].

lm =

⌊√
nm(m+ 1)

k
+

1

4
− 1

2

⌋
. (12)

If m(n− τm)− klm ̸= 1,

τm = n−
⌊
1

m
+

lmk

2m
+

(m+ 1)n

2(lm + 1)

⌋
− 1, (13)

otherwise,

τm = n− 1 + klm
m

. (14)

IV. THE INTERPOLATION

The BR interpolation consists of basis construction and
basis reduction. The former is to construct a basis of Fq[x]-
module that consists of polynomials satisfying the interpola-
tion constraints. Gröbner basis of the module will be obtained
by basis reduction. The interpolation polynomial Q(x, y, z) is
the minimum element in the Gröbner basis. Before introducing
the basis construction, the following preliminaries are needed.

Definition 3: Let ξ = (ξ0(x), ξ1(x), . . . , ξρ−1(x)) denote a
vector over Fq[x], and w = (w0, w1, . . . , wρ−1) ∈ Nρ. The
degree of ξ is

degξ = max{−vP∞(ξi(x)) + wi, ∀i}. (15)

The leading position of ξ is

LP(ξ) = max{i | −vP∞(ξi(x)) + wi = degξ} (16)

and the leading term of ξ is

LT(ξ) = ξLP(ξ)(x). (17)

Coefficient of the leading monomial (also called the leading
coefficient) of LT(ξ) is denoted by LC(LT(ξ)).

Definition 4: Given a matrix Ξ over Fq[x], let Ξ|i denote
its row-i and Ξ|(j)i denote the its entry of row-i column-j, the
degree of Ξ is

degΞ = max{degΞ|i, ∀i}. (18)

A. Basis Construction

Let IP ⊂ R[z]lm denote a set of all Q ∈ R[z]lm such
that Q has a zero of multiplicity m at the set of interpolation
points. Note that IP is an R-module. To define a basis for
IP, the following two module seeds are needed.

G(x) =
∏
αi∈A

(x− αi), (19)

K(x, y) =

n−1∑
i=0

riLi(x, y). (20)

Based on Theorem 1, it can be seen that K(Pi) = ri, ∀i.
Given an interpolation polynomial Q in (9), it can be written

as Q =
∑lm

j=0 Q[j]z
j , where Q[j] ∈ R. The following lemma

can be led to.
Lemma 3: Let Q =

s∑
j=0

Q[j]z
j ∈ IP with degzQ = s <

m, G(x)m−s|Q[s].
Proof: Since Q ∈ IP, it can be written as in (9) w.r.t.

any interpolation point (Pi, ri). Since degzQ = s < m and
ν ≤ s, Q[s] =

∑
µ≥m−s QµsΛ

µ
i , i.e., Λm−s

i |Q[s]. For Pi,
since it is not an affine point of order 2, Λi can be defined
as Λi = x− xi. Therefore, (x− xi)

m−s|Q[s]. Considering all
affine points, G(x)m−s|Q[s] can be led to.

Theorem 4: IP is generated as an R-module by lm + 1
polynomials H(t)(x, y, z) ∈ R[z]lm , where

H(t)(x, y, z) = G(x)m−t(z −K(x, y))t, if 0 ≤ t ≤ m, (21)

H(t)(x, y, z) = zt−m(z −K(x, y))m, if m < t ≤ lm. (22)

Proof: Since both G(x) and z−K(x, y) interpolate point
(Pi, ri), H(t) has a zero of multiplicity at least m at all
interpolation points P, i.e., H(t) ∈ IP. The above definition
shows that H(lm)

[lm] = 1. Given a polynomial Q ∈ IP, there
exists hlm = Q[lm] such that Q(lm−1) = Q − hlmH(lm),
where degzQ

(lm−1) ≤ lm − 1. Similarly, by (21) and (22),
H(t)

[t] = 1 for m ≤ t ≤ lm − 1, there exists polynomials
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ht ∈ R such that Q(m−1) = Q(lm−1) −
∑lm−1

t=m htH(t) and
degzQ

(m−1) ≤ m− 1. Therefore, Q(m−1) ∈ IP. By Lemma
3, G(x)|Q(m−1)

[m−1] . Since H(m−1)
[m−1] = G(x), there exists hm−1 =

Q
(m−1)

[m−1]

G(x) ∈ R such that Q(m−2) = Q(m−1) − hm−1H(m−1)

with degzQ
(m−2) ≤ m − 2. Following the same manner,

Q(t) with 1 ≤ t ≤ m − 2 can be deduced using H(t), until
Q(0) = h0G(x)m is reached.

Theorem 5: IP is generated as an Fq[x]-module by the
basis MP following

MP = {Mi | Mi = y(i mod 2)H(⌊ i
2 ⌋), 0 ≤ i ≤ 2lm + 1}. (23)

Proof: Based on Theorem 4, for each Q ∈ IP, there exist
h0, . . . , hlm ∈ R such that Q =

∑lm
t=0 htH(t). Since ht can

be written as ht = h
(0)
t + h

(1)
t y, where h

(0)
t , h

(1)
t ∈ Fq[x],

Q =
∑lm

t=0

∑1
j=0 h

(j)
t (yjH(t)).

Therefore, given the set of interpolation points P, the
module seeds of (19) (20) can be defined. They lead to the
basis construction of (23) for the Fq[x]-module IP.

B. Basis Reduction

The constructed basis MP will be further reduced, yielding
the Gröbner basis M′

P that contains the interpolation polyno-
mial Q(x, y, z).

Note that R[z]lm is a free module over Fq[x] of rank
2(lm + 1). It has a free basis of {1, y, z, yz, . . . , zlm , yzlm}.
IP is a submodule of R[z]lm over Fq[x], i.e., for each
Q ∈ IP, it can be written as Q = (ξ0(x), ξ1(x), . . . ,
ξ2lm+1(x))(1, y, . . . , yz

lm)T . Based on Theorem 5, let
Mi(x, y, z) = M

(0)
i (x)+M

(1)
i (x)y+ · · ·+M

(2lm+1)
i (x)yzlm ,

the basis MP of (23) can be accordingly represented as a
matrix V ∈ Fq[x]

2(lm+1)×2(lm+1) by letting

V|i = (M
(0)
i (x),M

(1)
i (x), . . . ,M

(2lm+1)
i (x)). (24)

Therefore, Mi(x, y, z) = V|i · (1, y, . . . , yzlm)T and V|(j)i =

M
(j)
i (x). Note that with w =(w0, w1, . . . , w2lm+1) ∈

N2(lm+1) and wi = k×⌊ i
2⌋ + 3 × (i mod 2), degV|i =

deg1,kMi(x, y, z).
At the beginning, the basis MP of (23) can be initialized as

a matrix V , which is a lower triangular matrix. For each row
V|i, LP(V|i) can be determined. Row operations of V will be
performed until LP(V|i) = i is reached. Since M0 = G(x)m
and M1 = G(x)my, LP(V|0) = 0 and LP(V|1) = 1. The row
operations can start with V|2. In general, if LP(V|i) = i, V|i
does not need to be modified. We go on to process V|i+1.
If LP(V|i) = j and j ̸= i, we let u = degV|i − degV|j
and v = LC(LT(V|i))LC(LT(V|j))−1. If u ≥ 0, V|i will be
updated by

V|′i = V|i − vxuV|j . (25)

Otherwise, V|j and V|i will be updated by

V|′j = V|i (26)

and
V|′i = x−uV|i − vV|j . (27)

Note that the update of V|i only involves the first i− 1 rows
of V and does not change the leading position of the rows.

The Gröbner basis M′
P of IP can be obtained by demap-

ping the updated V , i.e., V|′i 7→ M ′
i . The minimum polynomial

of M′
P is chosen as interpolation polynomial Q(x, y, z).

Summarizing the above description, the BR interpolation
algorithm for ALD of elliptic codes is stated as follows. Based

Algorithm 1 The BR Interpolation Algorithm
Input: r and m;
Output: Q;

1: Initialize MP as in (23);
2: Represent MP as matrix V over Fq[x] as in (24);
3: For i = 0 to 2lm + 1
4: Computing LP(V|i);
5: While LP(V|i) ̸= i do
6: j = LP(V|i);
7: If degV|i − degV|j ≥ 0
8: Update V|i as in (25);
9: Otherwise

10: Update V|j and V|i as in (26) and (27);
11: End while
12: End for
13: Demap the updated V as M′

P.
14: Pick up the minimum candidate from M′

P as Q(x, y, z).

on Theorem 2, the message polynomial f can be further
decoded by finding the z-roots of Q, i.e., Q(x, y, f) = 0.
It can be determined by the root-finding algorithm of [20].

V. COMPLEXITY ANALYSIS

This section analyzes complexity of the BR interpolation for
ALD of elliptic codes. The complexity refers to the number of
finite field multiplications required in decoding a codeword.

Complexity of the basis construction will be first analyzed.
Theorem 6: Complexity of constructing the MP of (23) is

O(m4n2).
Proof: Given an (n, k) elliptic code, polynomials G(x)j

and Li(x, y) can be determined. Their construction complexity
are not considered in a decoding event. Since deg1,kLi(x, y) =
n + 1, deg1,kK(x, y) = n + 1. Computing K(x, y) requires
at most n(n + 1) multiplications. Further, computing (21)
requires at most

∑m
t=1

∑t
j=0

(
n
2 (m− t) + 1

)
(t−j)(n+1) =

(n+1)
48 m(m + 1)(m + 2)((m − 1)n + 8) multiplication. For

remaining polynomials of (23), they can be obtained by the
above assignment of H(m) and yH(m). Therefore, complexity
of the basis construction is O(m4n2).

Complexity of the basis reduction will be determined by
degV and the number of row operations needed to bring V
into a Gröbner basis.

Lemma 7: [13] Given a row V|i of matrix V , at most
i(degV|i−degV|(i)i ) updates are needed such that LP(V|i) = i
and each update requires at most i

2degV finite field multipli-
cations.
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Theorem 8: Given a matrix V ∈ Fq[x]
2(lm+1)×2(lm+1),

complexity of the basis reduction is O(m2l3mn(n− k)).
Proof: Since deg1,kG(x) = n and deg1,kK(x, y) = n+1,

based on Theorem 5, degV ≤ degV|(2(lm−m))
2lm+1 = m(n+ 1) +

k(lm − m) + 3. For V|i(i = 0, 1, . . . , 2m + 1), degV|i =

mn + 3i − 5⌊ i
2⌋ and degV|(i)i = n(m − ⌊ i

2⌋) + wi. Hence,
degV|i − degV|(i)i = ⌊ i

2⌋(n + 1 − k). If 2m + 1 < i <
2lm +2, degV|i = m(n+1)+ k⌈ i−2m−1

2 ⌉+3(i mod 2) and
degV|(i)i = wi. Hence, degV|i − degV|(i)i = m(n + 1 − k).
Therefore, reducing V into a Gröbner basis requires at most∑2lm+1

i=0
i2

2 degV(degV|i − degV|(i)i ) ≈ 4l3m
3 m(n − k)(mn +

klm − km) finite field multiplications.
The above analysis shows that the basis reduction dominates

the BR interpolation complexity, and the basis reduction
complexity reduces as the code rate increases. Tables I and II
show our numerical results of the BR interpolation in decoding
the (80, 27) and the (80, 39) elliptic codes, respectively. The
two codes are constructed based on: y2+y = x3 defined over
F64. They validate the above analysis. In comparison with
Koetter’s interpolation whose complexity can be characterized
as O(lmm4n2), BR interpolation would be simpler in prac-
tice although they exhibit the same asymptotic behavior. By
introducing re-encoding transform to reduce the interpolation
complexity, Koetter’s interpolation and BR interpolation are all
reduced by a factor of k

n . This will be the authors’ future work.
It should be pointed out that there exist several basis reduction
algorithms [14] [17] that exhibit an asymptotically lower
complexity than the above mentioned process. However, they
heavily rely on fast multiplication techniques which contribute
to a large constant factor hidden in the big-O notation, This
makes their complexity greater than the MS algorithm in
decoding a code of practical length.

TABLE I
INTERPOLATION COMPLEXITY OF THE (80, 27) ELLIPTIC CODE

(m, lm, τm) (2, 3, 29) (4, 7, 31) (7, 12, 32)
Koetter 7.93× 105 1.65× 107 2.14× 108

BR Basis Construction 1.46× 104 4.85× 104 1.78× 105

Basis Reduction 4.48× 105 1.41× 107 1.88× 108

TABLE II
INTERPOLATION COMPLEXITY OF THE (80, 39) ELLIPTIC CODE

(m, lm, τm) (2, 3, 20) (4, 5, 22) (8, 11, 23)
Koetter 6.78× 105 8.00× 106 2.20× 108

BR Basis Construction 1.46× 104 4.85× 104 2.50× 105

Basis Reduction 2.80× 105 4.06× 106 1.36× 108

VI. CONCLUSION

This paper has proposed the BR interpolation algorithm for
ALD of one-point elliptic codes. The Lagrange interpolation
function over the elliptic function field has been proposed for

defining the module seeds. A basis of the module satisfying all
interpolation constrains has also been presented. Together with
a basis reduction, the BR interpolation algorithm for elliptic
codes has been proposed. Our complexity analysis has shown
that the BR interpolation has lower complexity than Koetter’s
interpolation and has more advantages for decoding high rate
codes. They have been verified by numerical results.
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